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14 The Mayer-Vietoris sequence

We have seen that it is routine but extremely laborious to calculate the homology

of complexes from first principles.

Eventually we will prove that H⇤(K) only depends on the geometric realizations

and we would much prefer not to have to work with specific triangulation. In

other words we’d like to think of a space as built up from more complicated

blocks than simplices. This might well mean that the building blocks themselves

have some homology.

In other words, if X = A [ B we would like to calculate H⇤(X) in terms of

H⇤(A), H⇤(B) and H⇤(A \B). This is what the Mayer-Vietoris Theorem does.

As usual with homology, we will prove a little algebraic result and then deduce

the statement about spaces from it.

14.1 Exact sequences of chain complexes

The algebraic input is a short exact sequence of chain complexes.

Definition 14.1. A short exact sequence of chain complexes is a sequence

0 �! A•
✓�! B•

��! C• �! 0

of chain complexes and chain maps so that for each integer n, we have a short

exact sequence

0 �! An
✓
n�! Bn

�
n�! Cn �! 0

of abelian groups.

Of course we always have one boring example.

Example 14.2. The trivial short exact sequence of chain complexes is

0 �! A•
✓�! A• � C•

��! C• �! 0

where ✓ includes A• as the first factor and � is projection onto the second factor.

The example of most immediate interest for us is as follows.

Example 14.3. Suppose K is a simplicial complex which can be written as

a union of two other simplicial chain compexes: K = L [ M . We introduce
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notation for the inclusion maps:

L [M

L

i
L

;;

M

i
M

cc

L \M

j
L

cc

j
M

;;

There is a short exact sequence of chain complexes

0 �! C•(L \M)
{(j

L

)
]

,�(j
M

)
]

}�! C•(L)� C•(M)
h(i

L

)
]

,(i
M

)
]

i�! C•(L [M) �! 0.

Indeed, we know that the maps (iL)], (iM )], (jL)] and (jM )] are chain maps, so

it remains only to note that since Kn = Ln [ Mn is the disjoint union of Ln

and Mn with the interesection identified, considering basis elements, we have a

short exact sequence

0 �! Z[Ln \Mn]
{(j

L

)
]

,�(j
M

)
]

}�! Z[Ln]� Z[Mn]
h(i

L

)
]

,(i
M

)
]

i�! Z[Ln [Mn] �! 0.

14.2 Statement of the Mayer-Vietoris theorem

Finally we are ready to state the theorem.

Theorem 14.4. (Mayer-Vietoris) A short exact sequence

0 �! A•
✓�! B•

��! C• �! 0

of chain complexes induces a long exact sequence of homology. In more detail,

there are natural connecting homomorphisms

@ : Hn(C•) �! Hn�1(A•)

so that the sequence

Hn(A)
✓⇤ // Hn(B)

�⇤ // Hn(C)
@ //

Hn�1(A)
✓⇤ // Hn�1(B)

�⇤ // Hn�1(C)
@ //

is exact.

In fact the statement has innumerable algebraic applications, but for us it will

be enough to consider one topological application.
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Corollary 14.5. If K = L [M there is a long exact sequence

Hn(L \M)
{(j

L

)
]

,�(j
M

)
]

}// Hn(L)�Hn(M)
h(i

L

)
]

,(i
M

)
]

i // Hn(L [M)
@ //

Hn�1(L \M)
{(j

L

)
]

,�(j
M

)
]

}// Hn�1(L)�Hn�1(M)
h(i

L

)
]

,(i
M

)
]

i// Hn�1(L [M)
@ //

14.3 Examples of the Mayer-Vietoris theorem

Before proving the theorem we will give a range of examples. The reader is

encouraged to give many more.

The general method is as follows

Step 1: Express the space as a union X = A [ B where one understands A,B

and A \B.

Step 2: Work out the homotopy types of A, B and A\B, and hence also write

down their homologies.

Step 3: Write out the entire Mayer-Vietoris sequence.

Step 4: Work out what happens in H0 using knowledge of the path components.

Step 5: Extract from the Mayer-Vietoris sequence exact sequencess for the

homology groups Hn(A [B).

Step 5: Identify the maps (jL)⇤ and (jM )⇤.

Step 6: Conclude as much as possible aboutH⇤(A[B) from the exact sequences.

Example 14.6. The homology of the projective plane is given by

Hi(RP 2) =

8
>>>>>><

>>>>>>:

0 i = 2

Z/2 i = 1

Z i = 0

0 otherwise

Proof. We view the projective plane as the union of a Möbius strip A and a

closed disc B. We could give an explicit triangulation, but this would be a

distraction.

It is clear that B ' ⇤ and that A \ B =: S1
@ is a circle. It is also easy to see

that the Möbius strip A is homotopy equivalent to its central circle S1
A.
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Thus A,B and A \ B are all path connected (with H0 being Z) and all have

Hi = 0 for i � 2. Finally H1(B) ⇠= H1(pt) = 0,

H1(A \B) = H1(S
1
@) ⇠= Z and H1(A) ⇠= H1(S

1
A) ⇠= Z.

We may now write out the Mayer-Vietoris sequence and find that there is an

exact sequence

0 �! H2(RP 2) �! H1(S
1
@)

↵�! H1(S
1
A) �! H1(RP 2) �! 0.

Finally H1(S1
@) is generated by the cycle of edges, which includes as the bound-

ary circle of the Möbius strip. This then retracts to the cycle going twice round

the central cirle S1
A. and ↵ is multiplication by 2, giving the claimed conclu-

sion.

Before proceeding it is worth recording another general result.

Lemma 14.7. (a) If K = L
`

M is the disjoint union of subcomplexes L and

M then

Hi(K) ⇠= Hi(L)�Hi(M)

for all i.

(b) If K = L _M is the wedge (one point union) of L and M then

Hi(K) ⇠= Hi(L)�Hi(M)

for all i � 1. Of course H0(L _M) is easy to work out (it is of rank one less

than H0(L)�H0(M)).

Proof. For Part (a) we apply the Mayer-Vietoris sequence, noting that L\M = ;
so that Hi(L \M) = 0 for all i. Accordingly the map

Hi(L)�Hi(M) �! Hi(L
a

M)

is an isomorphism. [Of course it is also obvious from the definition!].

For Part (b) the argument is almost identical except that L \ M = pt has

homology in degree 0.

Example 14.8. The homology of the compact orientable surface of genus g � 0

is given by

Hi(M(g)) =

8
>>>>>><

>>>>>>:

Z i = 2

Z2g i = 1

Z i = 0

0 otherwise
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Proof. The case g = 0 is the sphere, which has been dealt with above. For g � 1,

we view M(g) as formed from a 4g-gon with edges stuck together according to

the surface word

[x1, y1][x2, y2] · · · [xg, yg], where [a, b] = aba�1b�1.

We decompose this into a small central disc B and the complement A of its

interior. We could give an explicit triangulation, but this would be a distraction.

It is clear that B ' ⇤ and that A\B =: S1
@ is a circle. It is also easy to see that

the boundary 4g-gon is a strong deformation retract of A, and (after sticking

the edges together) this is a wedge of 2g circles, which are labelled by the 2g

letters x1, y1, x2, y2, . . . , xg, yg.

Thus A,B and A \ B are all path connected (with H0 being Z) and all have

Hi = 0 for i � 2. Finally H1(B) ⇠= H1(pt) = 0,

H1(A \B) = H1(S
1
@) ⇠= Z and H1(A) ⇠= H1(

2g_

i=1

S1) ⇠= Z2g,

where the last statement used Lemma ??.

We may now write out the Mayer-Vietoris sequence and find that there is an

exact sequence

0 �! H2(M(g)) �! H1(S
1
@)

↵�! H1(
2g_

i=1

S1) �! H1(M(g)) �! 0.

Finally H1(S1
@) is generated by the cycle of edges, which retracts along the

4g-gon, where it maps to

(x1 + y1 � x1 � y1) + (x2 + y2 � x2 � y2) + · · ·+ (xg + yg � xg � yg) = 0

(note this is the abelianized version of the surface word). This gives ↵ = 0, and

hence the claimed conclusion.

The point of the next example is to show that di↵erent geometric decomposi-

tions of a space (in this case the torus) can give quite di↵erent calculations, and

also to show that the knowledge of H⇤(A), H⇤(B) and H⇤(A\B) does not com-

pletely determine H⇤(A [ B). Indeed the torus and Klein bottle have di↵erent

homologies, but are both decomposed into subspaces which are homeomorphic.
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Example 14.9. The homology of the torus is given by

Hi(T
2) =

8
>>>>>><

>>>>>>:

Z i = 2

Z2 i = 1

Z i = 0

0 otherwise

The homology of the Klein bottle is given by

Hi(K
2) =

8
>>>>>><

>>>>>>:

0 i = 2

Z� Z/2 i = 1

Z i = 0

0 otherwise

Proof. Let X denote either T 2 or K2. In either case we decompose X into two

cylinders A and B, which intersect each other in two circles: A\B = S1
x

`
S1
y .

We could give an explicit triangulation, but this would be a distraction.

Since A and B are cylinders, they are each homotopy equivalent to a circle,

for example that at one end: A ' S1
A and B ' S1

B . It is visible that that

A \B =: S1
x

`
S1
y .

Thus A,B are path connected (with H0 being Z) and A \ B has two path

components and H0
⇠= Z2. It is also clear that all have Hi = 0 for i � 2. Finally

H1(A) ⇠= Z, H1(B) ⇠= Z, and H1(A \B) = H1(S1
x

`
S1
y) ⇠= Z2.

We may now write out the Mayer-Vietoris sequence and find that there is an

exact sequence

0 �! H2(M(g)) �! H1(S
1
x

a
S1
y)

↵�! H1(S
1
A)�H1(S

1
B) �! H1(X) �! Z �! 0.

It follows that

H2(X) = ker(↵)

and

H1(X) = Z� [Z2/ Im(↵)].

It remains to identify ↵, and this is a matter of carefully identifying generators.

Since all four inclusions

S1
x �! A ' S1

A, S
1
y �! A ' S1

A, S
1
x �! B ' S1

B and S1
y �! B ' S1

B

are all homotopy equivalences, there is really only one choice we need to make,

but then we need to think carefully about its implications.
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First we choose a representative cycle zx for a generator [zx] 2 H1(S1
x). We use

this to give us a generators

• zA = (jA)](zx) of H1(S1
A)

• zB = (jB)](zx) of H1(S1
B) and

• zy for H1(S1
y) chosen so that (jA)⇤([zy]) = [zA]

We now have generators for all our groups, and we have

↵ =

0

@ 1 1

�1 ?

1

A

The remaining question is how (jB)⇤[zy] compares to our generator [zB ] of

H1(B).

Observation

• For the torus (jB)⇤([zy]) = +[zB ] in H1(S1
B)

• For the Klein bottle (jB)⇤([zy]) = �[zB ] in H1(S1
B)

Accordingly

↵T =

0

@ 1 1

�1 �1

1

A and ↵K =

0

@ 1 1

�1 1

1

A

The result follows for the torus since ↵T has (1,�1) = [zx] � [zy] generating

the kernel, and the image (generated by (1,�1) = ([zA],�[zB ])) is a direct

summand.

The result follows for the Klein bottle since ↵K has determinant 2, so it is

injective, and the image is of index 2.

Example 14.10. For n � 0, the homology of complex projective n-space is

given by

Hi(CPn) =

8
<

:
Z if i is even and 0  i  2n

0 otherwise

Proof. We may prove this by induction on n. Indeed, if n = 0 the space CP 0 is

a point, and the statement is correct. Now suppose n � 1 and that H⇤(CPn�1)

is as stated.
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We take B to be a small closed 2n-disc around [0 : 0 : · · · : 0 : 1] and A to be

the complement of the interior. We see that A consists of points [z0 : z1 : · · · :
zn�1 : zn] with not all of z0, z1, . . . , zn�1 are 0, so that it is homotopy equivalent

to

CPn�1 =

{ [z0 : z1 : · · · : zn�1 : 0] | not all entries are zero }.

Thus A ' CPn�1, B ' ⇤ and A \B = S2n�1.

As usual, H0 is immediate, and since Hi(S2n�1) = 0 for 0 < i < 2n � 1, the

Mayer-Vietoris sequence gives

Hi(CPn) ⇠= Hi(CPn�1) for i  2n� 1

and

H2n(CPn) = Z.

This completes the inductive step and the result follows by the principle of

mathematical induction.

14.4 Proof of the Mayer-Vietoris theorem

We need to define the boundary map and then check exactness in 3 places. To

start with, we display three rows of the chain complexes to work on

0 // An+1
✓
n+1 //

d

✏✏

Bn+1
�
n+1 //

d

✏✏

Cn+1
//

d

✏✏

0

0 // An
✓
n //

d

✏✏

Bn
�
n //

d

✏✏

Cn
//

d

✏✏

0

0 // An�1
✓
n�1 // Bn�1

�
n�1 // Cn�1

// 0

14.4.1 Definition of @

The first thing is to define @ : Hn(C) �! Hn�1(A). Crudely speaking we take

@(�) =! = ✓�1 � d � ��1(�)

but we need to make sense of this. More precisely, we choose a representative

cycle z 2 Cn for �, so that � = [z] and then choose y 2 Bn so that �y = z.

Now we note that since z is a cycle, �(dy) = d�y = dz = 0 and so there is
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an x 2 An�1 so that ✓(x) = dy. Finally, we argue that x is a cycle: indeed

�dx = d�x = ddy = 0 so dx = 0 since � is injective. In short we may display

this

y
� //

_

✏✏

z_

✏✏
x
� //

_

✏✏

dy
� //

_

✏✏

0

dx
� // 0

Next we need to check that this is well defined, since we made choices of z and

of y.

The first choice was that of cycle representative z. If we had chosen z0 instead

then there would be a c 2 Cn+1 so that d(c) = z � z0, and then a b 2 Bn+1

so that �(b) = c. Then we could choose y0 = y � db as our lift of z0 and then

dy0 = dy, so that we would get the same element x.

Our second choice was of y. If we had instead chosen y0 with �y0 = z then of

course there is an a with ✓a = y� y0, and so da = x� x0 and so x and x0 define

the same homology class.

Altogether we have shown that @ is a well defined group homomorphism not

depending on any choices.

14.4.2 Exactness at A

We need to check that Im@ = ker ✓⇤ at Hn�1(A). First note that ✓⇤ � @ = 0

since with the above notation ✓⇤[x] = [✓x] = [dy] = [0]. Next suppose that

↵ 2 Hn�1(A) has ✓⇤(↵) = 0. Choose a cycle representative so that ↵ = [x]. We

have ✓⇤[x] = 0, so that ✓(x) = dy for some y 2 Bn. Then if we take z = �y we

get @[z] = [x] = ↵ as required.

14.4.3 Exactness at B

We need to check that Im✓⇤ = ker�⇤ at Hn(B). First note that �⇤ � ✓⇤ = 0

since � � ✓ = 0. Now if �⇤� = 0 we may choose a representative cycle y 2 Bn
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with � = [y], and there is an c 2 Cn+1 with dc = �(y).

b � // c_

✏✏
x � // y � db, y � //

_

✏✏

�y

0

Since � is surjective there is a b so that �(b) = c. Then �(y � db) = 0 so that

there is an x 2 An with ✓(x) = y�db. Furthermore, ✓(dx) = d✓x = dy�d2b = 0

so that since ✓ is injective dx = 0 and x is a cycle, so ✓⇤[x] = [✓x] = [y�db] = [y]

as required.

14.4.4 Exactness at C

We need to check that Im�⇤ = ker @ at Hn(C). First note that @ ��⇤ = 0 since

if � 2 Hn(B) has representative cycle y 2 Bn we have �⇤(�) = �⇤[y] = [�y] and

in defining @([z]) with z = �y we get dy = 0 so x = 0.

Finally if @[z] = [x] = 0 we have x = da for some a 2 An.

a_

✏✏

y
_

✏✏

� // z

x
� // dy

We now modify our choice of y by taking y0 = y � ✓a (noting this still maps to

z). We then check y0 is a cycle since d(y�✓a) = dy�d✓a = dy�✓da = x�x = 0.

Since y0 is a cycle we have �⇤[y0] = [z] as required.

15 The Euler characteristic and the Lefschetz

fixed point theorem

We give two examples where a simplicial invariant can be reduced to homology.

In view of the fact that simplicial homology is a homotopy invariant, this is

extremely powerful.

The Euler characteristic is a rather well known classical invariant (going back

to Euler’s formula V � E + F = 2 for polyhedra). From the point of view

of combinatorics, the amazing thing is that this combination of numbers is
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invariant. From the point of view of topology the amazing thing is that a

topological invariant can be calculated in such concrete terms. Probably the

first application is the fact that orientable surfaces are distinguished by their

Euler characteristice (�(M(g)) = 2� 2g).

The Lefschetz Fixed Point Theorem builds on this. In fact it gives a su�cient

condition for a self-map f : X �! X of a triangulable space X to have a fixed

point. It is amazingly powerful, and it also has counterparts in other parts of

mathematics (e.g., arithmetic geometry where proofs of the Weil Conjectures

involve this type of construction).

15.1 Homology with rational coe�cients

We briefly note that we may systematically throw away all the torsion.

Definition 15.1. If K is a simplicial complex and F is a field, we define

Cn(K;F ) = F [Kn]

(i.e., exactly the same as for Cn(K) but with Z replaced by F ). We make this

into a chain complex C•(K;F ) using exactly the same formula for dn as for the

integral case. We then define

Hn(K;F ) = Hn(C•(K;F )).

We note that this actually makes sense for any ring F , but we will concentrate

on fields, and on F = Q in particular.

Lemma 15.2. If Hn(K) = Zr�T with T a finite abelian group then Hn(K;Q) =

Qr.

Remark 15.3. Of course this means that H⇤(K;Q) determines the torsion

free part of H⇤(K). One can use this along with H⇤(K;Fp) to give information

about the p-torsion of H⇤(K).

Proof. The key is that Bi(K) and Zi(K) are free abelian groups, and if we

choose bases for them, they also give bases for Bi(K;Q) and Zi(K;Q).

If Hn(K) = Zr � T this means that the rank of Zn(K) is r more than the rank

of Bn(K). Here the sentence was written with ‘rank’ meaning ‘the number of

generators in a Z-basis’. This means that the dimension of Zn(K;Q) is r more

than the dimension of Bn(K).
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15.2 The Euler characteristic

We now note that we may define two versions of the Euler characteristic.

Definition 15.4. To a simplicial complex K we may associate two numbers.

(i) The combinatorial Euler characteristic is defined by

�comb(K) =
X

i

(�1)i|Ki|,

where |Ki| is the number of i-simplices.

(i) The homological Euler characteristic is defined by

�hom(K) =
X

i

(�1)i dimQ(Hi(K;Q)).

In a classic sort of theorem, we find that the number defined in terms of an

invariant (the homology) can be calculated using a choice of additional structure

(the triangulation).

Theorem 15.5. For any simplicial complex K we find

�comb(K) = �hom(K).

Remark 15.6. Once we have shown that homology is a homotopy type invari-

ant, this shows that �comb(K) is a homotopy type invariant, and in particular

does not depend on triangulation.

Proof. First note that

Bi(K;Q) ✓ Zi(K;Q) ✓ Ci(K;Q).

Choose a basis {b↵i }
m

i

↵=1 of Bi(K;Q) (with mi elements, say) extend this to a

basis of Zi(K;Q) by adding {z�i }
n
i

�=1 (with ni elements, say) extend this to a

basis of Ci(K;Q) by adding {c�i }
p
i

�=1 (with pi elements, say).

Indeed we can refine this a little by starting with the highest dimension of cells,

and then when we reach the i-simplices (having already made choices in higher

dimensions) we note that mi = pi+1 and we may take b�i = d(c�i+1).
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Now note

�comb(K) =
P

i(�1)i|Ki|

=
P

i(�1)i(mi + ni + pi)

=
P

i(�1)i(mi � pi+1) +
P

i(�1)ini

=
P

i(�1)ini

=
P

i(�1)i dimQ Hi(K;Q)

= �hom(K)

In view of the theorem we will usually write �(X) for the Euler characteristic

and freely use the fact that we may calculate it with combinatorics or homology.

Example 15.7. The Euler characteristics of the compact connected surfaces

are

�(M(g)) = 2� 2g

�(N(h)) = 2� h.

Exercise 15.8. Count the number of edges, vertices and faces for the 5 platonic

solids, and hence � = V � E + F . Choose a triangulation of the 2-torus and

hence calculate its Euler characteristic.

15.3 The Lefschetz Fixed Point Theorem

We now want to apply similar ideas to study maps.

Definition 15.9. If A• is a chain complex of rational vector spaces and ✓ :

A• �! A• then its Lefschetz number is defined by

⇤(✓) =
X

i

(�1)itr(✓i : Ai �! Ai).

Using the topological invariance of homology we have the following wonderful

theorem.

Theorem 15.10. (Lefschetz Fixed Point Theorem (LFPT)) Suppose X is a

triangulable space and f : X �! X is a continuous self-map inducing f⇤ :

H⇤(X) �! H⇤(X). If ⇤(f⇤) 6= 0 then f has a fixed point.

For the present we will prove the statement for simplicial map, returning later

to deduce the full LFPT when we have considered simplicial approximations.
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Theorem 15.11. (Simplicial Lefschetz Fixed Point Theorem (SLFPT)) Sup-

pose K is a simplicial complex and s : K �! K is a simplicial self-map inducing

s⇤ : H⇤(K) �! H⇤(K). If ⇤(s⇤) 6= 0 then |s| : |K| �! |K| has a fixed point.

Indeed, we note that if s takes any simplex hv0, . . . , vki to itself then it just

permutes the vertices so |s| fixes the barycentre �̂. Thus if |s| has no fixed point

then every map

s] : Ci(K) �! Ci(K)

has zero trace and hence ⇤(s]) = 0. The result follows from an algebraic propo-

sition.

Proposition 15.12. If s : K �! K is a simplicial map inducing s] : C•(K;Q) �!
C•(K;Q) and s⇤ : H⇤(K;Q) �! H⇤(K;Q) then

⇤(s]) = ⇤(s⇤).

Proof. As in the proof of 15.5 that the combinatorial and homological Euler

characteristics agree, we note that

Bi(K;Q) ✓ Zi(K;Q) ✓ Ci(K;Q),

and we choose a basis {b↵i }
m

i

↵=1 of Bi(K;Q) (with mi elements, say) extend this

to a basis of Zi(K;Q) by adding {z�i }
n
i

�=1 (with ni elements, say) extend this

to a basis of Ci(K;Q) by adding {c�i }
p
i

�=1 (with pi elements, say). Once again

we start from the top, note that mi = pi+1 and we take b�i = d(c�i+1).

Now consider the matrix of s] with respect to these bases

⇥i =

0

BBB@

Ri ? ?

? Si ?

? ? Ti

1

CCCA

Now from our choice of bases and the fact that ✓ is a chain map we see

Ti = Ri�1

Now we calculate

⇤(s]) =
P

i(�1)itr(s] : Ci(K;Q) �! Ci(K;Q))

=
P

i(�1)itr(⇥i)

=
P

i(�1)i(tr(Ri) + tr(Si) + tr(Ti))

=
P

i(�1)i(tr(Ri)� tr(Ti+1)) +
P

i(�1)itr(Si)

=
P

i(�1)itr(s⇤ : Hi(K;Q) �! Hi(K;Q))

= ⇤(s⇤)
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Corollary 15.13. If X is a triangulable space with a self-map f : X �! X

with no fixed points and f ' idX then �(X) = 0.

Proof. We have

0 = ⇤(f) = ⇤(id) = �(X),

where the first equality is from the LFPT since f has no fixed points, the second

follows since f ' id so that f⇤ = id, and the third follows since the trace of the

identity is the dimension.

Corollary 15.14. If X has a free action of the circle group then �(X) = 0.

Proof. The map m✓ : X �! X given by the action of ei✓ gives a self-map. Since

the action is free, m✓ has no fixed point if ✓ is not a multiple of 2⇡. The maps

mt✓ for t 2 [0, 1] give a homotopy m✓ ' m0 = idX .

Example 15.15. The torus and Klein bottle have fixed point free self-maps

homotopic to the identity. No other surfaces do (since they have non-zero Euler

characteristic).

Example 15.16. Odd spheres have have fixed point free self-maps homotopic

to the identity. Even spheres do not.

The antipodal map f : Sn �! Sn is of degree (�1)n+1


