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12 Homology of simplicial complexes

We are now ready to define the homology of simplicial complexes. Unless we say

otherwise, all our simplicial complexes K will be abstract simplicial complexes,

but we will tend to draw pictures of geometric simplicial complexes K whose

associated abstract complexes are K.

The strategy for defining homology is as follows.

Step 1: Start with a simplicial complex K.

Step 2: Construct a chain complex C•(K).

Step 3: Take the homology of the chain complex: H⇤(K) = H⇤(C•(K)).

It will be easy to see that

1. if s : K �! L is a simplicial map then

2. s induces a chain map s• : C•(K) �! C•(L) and then

3. s• induces a map s⇤ : H⇤(K) �! H⇤(L).

Eventually we will show

• H⇤(K) depends only on the topological space |K|.

• Any continuous function f : |K| �! |L| (unrelated to the simplical struc-

ture!) induces a group homomorphism f⇤ : H⇤(|K|) �! H⇤(|L|) in a

functorial way.

• If f ' f 0 then f⇤ = f 0
⇤

12.1 The chain complex

If K is a simplical complex, we define Cn(K) := Z[Kn] (i.e., the free abelian

group with basis given by the n-simplices of K). Note that this means that

Ci(K) = 0 if i < 0 or if i > dim(K).

For each n � 0 we now define a map

dn : Cn(K) �! Cn�1(K).

To do this, we choose an ordering of the vertices. We will shortly show this

makes no di↵erence. If {v0, v1, . . . , vn} is an n-simplex with the vertiices in
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the right order we write hv0, v1, . . . , vni for the corresponding basis element of

Cn(K) = Z[Kn].

Definition 12.1. The map dn : Cn(K) �! Cn�1(K) is defined by

dn(hv0, v1, . . . , vni) =

hv1, . . . , vni � hv0, v2, . . . , vni+ · · ·+ (�1)ndn(hv0, v1, . . . , vn�1i

=
nX

i=0

(�1)ihv1, . . . , v̂i, . . . , vni

where v̂i means that vi is omitted.

Remark 12.2. (i) Since Cn(K) is a free abelian group, any homomorphism

(such as dn) with that domain is freely determined by where the basis elements

go.

(ii) Note that if we permit other orderings of the simplex (specified by a per-

mutation � of {0, . . . , n}, and relate them to the chosen basis by

hv�(0), v�(1), . . . v�(n)i = sign(�)hv0, v1, . . . vni

then the formula is exactly the same. This shows that not only does the answer

not depend on the total order of the vertices, it does not depend on the ordering

of the vertices within a simplex.

Lemma 12.3. For any n and any simplical complex K, dn�1 � dn = 0.

Proof. It su�ces to verify that each of the basis elements get sent to zero. We

simply calculate

dn�1(dnhv0, v1, . . . , vni) = dn�1(
Pn

i=0(�1)ihv0, v1, . . . v̂i, . . . , vni)

=
Pn

i=0(�1)idn�1(hv0, v1, . . . v̂i, . . . , vni)

=
Pn

i=0(�1)i
Pi�1

j=0(�1)jhv0, v1, . . . , v̂j , . . . , v̂i, . . . , vni)

+
Pn

i=0(�1)i
Pn

j=i+1(�1)j�1hv0, v1, . . . , v̂i, . . . , v̂j , . . . , vni

Now notice that if we pick 0  s < t  n then the simplex hv0, v1, . . . , v̂s, . . . , v̂t, . . . , vni
occcurs twice:

once with i = s, j = t and sign (�1)s+t�1

once with j = s, i = t and sign (�1)s+t

These two terms cancel.
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12.2 Homology of simplicial complexes

In the light of Lemma 12.3 we may make the following definition.

Definition 12.4. If K is an abstract simplicial complex, the homology is defined

by

Hn(K) := Hn(C•(K), d)

Explicitly

Hn(K) :=
ker(d : Cn(K) �! Cn�1(K))

Im(d : Cn+1(K) �! Cn(K))
.

We note first that it is obvious that Hi(K) = 0 if i < 0 or if i > dim(K). Let

us look at a few more elementary examples.

Example 12.5. (a) The first example we have already done K = @�2:

Hn(@�
2) =

8
>>><

>>>:

Z if n = 0

Z if n = 1

0 otherwise

(b) If K consists of 5 edges consisting of a square and one diagonal then

Hn(K) =

8
>>><

>>>:

Z if n = 0

Z� Z if n = 1

0 otherwise

.

(c)

Hn(@�
3) =

8
>>><

>>>:

Z if n = 0

Z if n = 2

0 otherwise

There are a couple of extreme cases where the answer is obvious. The first is

immediate from the definition.

Lemma 12.6. If K is n-dimensional then

Hn(K) := ker(d : Cn(K) �! Cn�1(K)).

12.3 Low dimensional homology

Recall that ⇡0(K) is the set of equivalence classes of vertices under the equiva-

lence relation generated by v0 ⇠ v1 when {v0, v1} is an edge. We also showed
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that

⇡0(K) ⇠= ⇡0(|K|)

using the map taking the equivalence class of a vertex to its path component.

Lemma 12.7.

H0(K) = Z[⇡0(K)]

Proof. We note that d0 = 0, and

d1 : C1(K) �! C0(K)

hv0, v1i 7�! hv1i � hv0i

By definition therefore H0(K) is the quotient of Z[K0] by the subgroup gener-

ated by di↵erences of of vertices connected by edges.

There is a similar statement for H1, which we will not prove.

Theorem 12.8. (Poincaré) If K is path connected and v0 is a vertex of K then

there is an isomorphism

H1(K) = ⇡1(|K|, v0)ab.

12.4 Induced maps

We should really chack that simplicial homology gives a functor from simplicial

complexes (and simplicial maps) to chain complexes (and chain maps).

Definition 12.9. If s : K �! L is a simplicial map of abstract chain complexes

then we may define s] : Ck(K) �! Cjk(L) by

shv0, . . . , vki := hs(v0), . . . , s(vk)i.

Lemma 12.10. (i) For any simplicial map s : K �! L, the map s] is well

defined and taking all the components together we obtain a chain map

s] : C•(K) �! C•(L).

(ii) The construction is functorial in the senst that (idK)] = idC•(K) and if

t : L �! M is another map of chain complexes,

(t � s)] = t] � s].

Proof. Autoproof.
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We may then take the induced map on homology

Definition 12.11. If s : K �! L is a simplicial map of abstract chain com-

plexes then we may define s⇤ : Hk(K) �! Hk(L) to be the map in homology

induced by s].

Lemma 12.12. The construction is functorial in the senst that (idK)⇤ =

idH⇤(K) and if t : L �! M is another map of chain complexes,

(t � s)⇤ = t⇤ � s⇤.

Proof. Combine Lemmas 11.16 and 12.10

13 Chain homotopy, cones and spheres

In this section we will calculate the homology of spheres, and hence start to

justify the slogan ‘nth homology measures n-sphere-like holes’. In fact the work

we do feeds into the more important project of showing that homology is an

invariant of homotopy type.

Indeed, the main ingredient of both tasks is to see that the homology of certain

obviously contractible complexes (cones) is the same as that of a point.

13.1 Chain homotopy

In fact chain complexes let one model even more of the geometric structure.

Definition 13.1. If ✓,� : A• �! B• are two chain maps between chain com-

plexes, a chain homotopy from ✓ to � is a sequence of maps

hn : An �! Bn+1

so that

dh+ hd = �� ✓.

We then say that ✓ is homotopic to � and write ✓ ' �.

Lemma 13.2. Chain homotopy is an equivalence relation on chain maps from

A• to B•.

Proof. Exercise.
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Lemma 13.3. If ✓ ' � then the induced maps on homology are the same:

✓⇤ = �⇤.

Proof. Suppose h is a chain homotopy, with hd + dh = � � ✓. Then for any

n-cycle z 2 ZnA we have

�⇤[z] = [�z] = [✓z + dhz + hdz] = [✓z] = ✓⇤[z].

Note that by the usual formal argument it follows that if two chain complexes

are chain homotopy equivalent then they have isomorphic homology: in more

detail if there are maps ✓ : C• �! D• and � : D• �! C• so that ✓ � � ' id and

� � ✓ ' id then ✓⇤ and �⇤ are inverse isomorphisms and H⇤(C) ⇠= H⇤(D).

13.2 Cones

We may imagine the construction which takes a simplicial complex K in Rn and

forms a new simplicial complex cPK in Rn+1 where P is any point of Rn+1 not

in Rn: the P -cone on K. This is obtained by joining all points of |K| to P .

Definition 13.4. (i) If � = hv0, . . . , vki is a simplex in Rn and P 2 Rn+1 \Rn

then we take cP� = hP, v0, . . . , vki this is a (k + 1)-simplex in Rn (indeed, if

v0, . . . , vk are (k + 1)-points in general position in Rn then P, v0, . . . , vk are

(k + 2)-points in general position in Rn+1).

(ii) For the counterpart in the abstract setting, if P is not amongst the vertices

of the set � we take

cP� = � [ {P}.

(iii) If K is a simplicial complex in Rn and P 2 Rn+1 \ Rn then cPK is the

simplicial complex in Rn+1 given by

cPK = K [ {cP� | � 2 K} [ {hP i}

(iv) If K is an abstract simplicial complex with vertex set V and P is not in V

then cPK is the abstract simplicial complex with vertex set V [ {P}

cPK = K [ {cP� | � 2 K} [ {hP i}

Lemma 13.5. In both cases cPK is a simplicial complex, and |cPK| is the

convex hull of P and |K|.
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Proof. It is clear that both constructions are closed under passage to faces, and

(in the geometric setting) that two simplices intersect in a common face.

First we observe that |cPK| ' ⇤. Indeed, the inclusion of P is a homotopy

equivalence since the identity is homotopic to the constant map at P by the

linear homotopy. The important thing is that we can mimic this algebraically:

it is worth emphasizing that this fact is the key to showing that simplicial

homology is a homotopy invariant.

Proposition 13.6. For any simplicial complex K,

H⇤(cPK) ⇠= H⇤(pt)

(or, more explicitly, H0(cPK) ⇠= Z and Hi(cPK) = 0 for i 6= 0).

Proof. We will show that the identity map of C•(cPK) is chain homotopic to

the map ✏P defined as zero on Cn(cPK) if n 6= 0 and by ✏P hvi = hP i when

n = 0. In other words, we need to find

h : Cn(cPK) �! Cn+1(cPK)

for n � 0 so that

hd+ dh = id� ✏P .

Let us number P less than all the other vertices and if � = hv0, . . . , vki we write
P� = hP, v0, . . . , vki.

We may define h simplex by simplex, and if P 62 � we take

h(�) = P�, h(P�) = 0.

Now we simply calculate. In degree 0 we have

(dh+ hd)hvi = d(hP, vi) = hvi � hP i and (dh+ hd)hP i = 0 = hP i � hP i.

When � is a k-simplex for k > 0 we find

(dh+ hd)(�) = dP� + hd� = � � Pd� + Pd� = �

and

(dh+ hd)(P�) = d0 + h(� � Pd�) = P�.
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13.3 The homology of spheres

We have observed that @�n+1 = (�n+1)(n) is a simplicial version of the n-

sphere Sn. We have already calculated its homology for n = 0, 1, 2, 3 from first

principles and we are now equipped to calculate its homology in general.

Proposition 13.7. For n � 1,

Hk(@�
n+1) =

8
>>><

>>>:

Z if k = 0

Z if k = n

0 otherwise

Proof. Note that �n+1 and @�n+1 are almost the same: the former just has

one more simplex, than the latter. In particular

Ci(�
n+1) = Ci(@�

n+1)

for i 6= n+ 1. This immediately shows

Hi(@�
n+1) = Hi(�

n+1)

for i  n � 1, which is as required by Proposition 13.6. For the interesting

degree, n we may now argue

Hn(@�
n+1)

(1)
= Zn(@�

n+1)
(2)
= Zn(�

n+1)
(3)
= Bn(�

n+1)
(4)
= d(�n+1)

(5)⇠= Z.

For (1) we use Lemma 12.6. For (2) we use the fact that the two complexes

agree below n. For (3) we use Hn(�n+1) = 0 by Proposition 13.6. For (4) we

use the fact there is just one (n+ 1)-simplex. For (5) we use Hn+1(�n+1) = 0

by Proposition 13.6 so that the di↵erential from Cn+1 to Cn is injective.


